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Fig. 10. Gain compressionas a function of output power measuredat
12 GHz. (a) Responseof the 8- to 12-GHz amplifier optimized for
large-signalperformance. (b) Responseof the sameamplifier, but with
its output circuit retuned externalityfor maximum small-signal gain.

output port retuned for maximum small-signal gain. The

retuning of the output was simulated with the aid of an

external tuning arrangement [5]. This experiment quanti-

tatively illustrates the reduction in large-signal gain which

would result if achieving the nominal output power level

had been attempted with only a small-signal design.

IV. CONCLUSIONS

A systematic procedure has been described for design-

ing GaAs FET power amplifiers for optimum large-signal
gain performance. The technique has been applied,

specifically, to broadband quasi-class-A circuits. The

principal merits of the method include remarkable sim-

plicity and numerical efficiency of the overall design

procedure, reliability in predicting large-signal amplifier

performance, and the need to acquire experimental large-

signal data only at one particular frequency. The viability

of this approach has been verified through various com-

parisons between measured and predicted results for three

individual devices exhibiting considerably differing

geometries and electrical characteristics.
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I. INTRODUCTION

R ECENTLY, various methods for combining the out-

put powers of several active devices have been pre-

sented [1], [2]. They can be classified conveniently into ml?!l!!l:l!lg:~
two categories: those which combine outputs of several

discrete oscillators coupled together and those which con-

struct a multiple-device oscillator. In the former, choice of

the combining (or coupling) network is of primary impor-

tance and both tree and chain structures are typical [3]-[5].

Single-step combining has been proposed recently [6]. As

~ = (~$,i.k

for the latter category, the general principle of building a

multiple-device oscillator is such that diodes are effec- Fig. 1. A power combining multiple-device ladder network.

tively coupled with a common single cavity [7]–[ 10], with

an exception which connects devices to a load at the which can be rewritten as
center through coaxial lines [1 1].

This paper treats a ladder network loaded with active d2vk
devices and connected to a resistive load as shown in Fig. ~ +(1+ 20)0~ – P( ‘k- I + ‘k+ 1)

1. While the network apparently consists of inductively

coupled oscillator cells, it belongs essentially to the latter

category because each active element couples with a nor-

mal mode of the ladder structure. In Sections II and III, where

after deriving fundamental equations describing the be-

havior of each normal mode, we discuss of power-

combining capability and stability for each mode, together

with examination of simultaneous multimode oscillations.

Section IV is devoted to description of a method for

suppression of undesired modes. Further, in Section V, we The boundary

treat a distributed-line coupled ladder structure with the by use of (la),

object being to offer a theoretical basis for building a

microwave multiple-device ladder oscillator.

T=oJot a;=1/LC

~= L/L, ~= l/6Joc

go=gl–g. (3b)

condition is given by i. = iN+ 1= O which,

leads to

Vo=vl

v~=v~+l. (4)

II. FUNDAMENTAL EQUATION Then (3a) can be expressed by a vector differential equa-

A line array of van der F’ol oscillators mutually coupled tion

by inductances or capacitances, was analyzed by Endo

and Mori who studied its behavior and investigated the

possibility of simultaneous multimode oscillations [12].

Here we treat the same structure, but with a load of ‘ith

conductance gL connected as shown in Fig. 1, with the

object being to investigate its power combining capability.

supposing that gL is connected at the lth section, we

can write the circuit equations as
and

dzu

[
— +Bv=p (goE–gLD1)$ – ~e$

1
(5a)

drz

V=[V1, V2,. . “,vN]f

V=[o; ,v;,”””, f);]’ (5b)

I
I+p –p ...,. o

B=
–p. .!+2B . . .._p”- . . . .._p

. . .
“ l+2p

1

(5C)
. . . .

0 . . .
-P 1+/3

dik
Ltz ‘vk–v~~,

dvk 1
ik_l —ik. c—

dt J
+ ~ Vkdt+(g+g~8k~)vk +iakj

/c=1,2, --., N (1)
where 1? is the unit matrix and D[ the matrix in which only

where tlkl is the Kronecker delta and, for the volt-ampere the (1, 1) element has nonzero value of unity and all the

characteristic of the active element, a simple cubic nonlin-
others are zero.

earity is assumed
Let us now introduce the normal modes of the unper-

4
turbed system which is described by d20/dr2 + Bv = O,

iak= –glvk+ —Ov; .
3

(2) and transform (5a) into the differential equation describ-

ing the oscillation at each mode. The normal modes are

Combination of (1) and (2) gives represented by the eigenvectors of the matrix B, which

dzvk 1 1 2

()

1

dt 2 ‘z z+~ ‘k–
‘@,-&@k,-48v;)~~(vk-l+vk+l) = ~
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Fig. 2. Distribution of normal mode frequencies & . . .

easily be obtained as

Pj= [pljp2j” “ “pNJ]t~ j=l,2, ”””, N (6a)

with

[

~k,= m? forj= 1

~ cos [(2k- I)(j- 1)/2N]w, forj >2

(6b)

where k= 1,2,””” , N and pi p; =etlij is imposed. The corre-

sponding eigenvalues of B are gwen by

Aj = 1 +4flsin2J~T, j=l,. ... N (6c)

{and A; tio indicates the frequency of the jth mode

oscillation of the unperturbed system (see Fig. 2).

Let us expand u as

N

where XJ’s are called the mode variables and are assumed

to have the form

‘j=Ajc0s(AY2’+ti) (8)

and apply the equivalent linearization technique due to

Kryloff and Bogoliuboff [13] to the term in (5a) under the

assumption of no resonant interaction between modes.

Further, if we assume that the mode frequencies are

separated sufficiently, the terms including dxi/d~ will give

only negligible effect on the j th mode oscillation as long

as i #j. Thus, we obtain

(px.

( )-~+Ajxj=p (xj-tjjA; – ~ ~iA: ~
d~2

(9a)
i(#j)

where

sxj=g~ –gLp&

N

$j-e ~ P:j

k= 1

~i =2e ~ P;jP:i, j,i=l,2, --. ,N. (9b)
k=l

After Ramb’s theory of laser oscillation [14], we may call

aj a gain parameter and qj and ~.i self- and mutual-

saturation parameters, respectively. Substituting (6b) into
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(9b), we can determine these parameter values as

a] ‘b’o ‘&,/N

2gL ~os2 (21- I)(j- 1) ~
aj =g,B — —

N 2N ‘
j>2 (lOa)

and

[

@/N, forj=i=l, l+ N/2

qi = ‘(3/2)e/NY forj=i#l, 1 ‘N/2 (lob)
@/N, forj+i=N+2

:29/N, for other j, i.

Using the averaging method under the assumption that Ai

and ~j in (8) are slowly varying functions of time, we

finally obtain the reduced differential equations

dqj
—.
d~

o.

of (9@ as

(11)

III. STEADY STATE OF OPTIMUM OPERATION

A. Maximun~ Ou@t Power

Consider al steady state in which only one mode, say the

jth mode, is excited. Putting A?= O for all i except j and

~~/d~ = O in (11), the amplitude of steady oscillation at

this mode is given as

(12)

When the circuit is connected with a load at the lth

section and operates at the jth mode, the voltage of the

k th section, V~(l, j), and the output power P(Z, j) are

then given, ulsing (7) and (12), as

V/(l, j) =pijA~o=p;j~j/%j (13)

and

P(1,j) = +g~v/2(1,j) = ~gL.pfiaj/$j. (14)

As we can see in (6b) and (10) the first and the (1 + N/2)th

modes are of particular interest. So, it will be appropriate

to proceed in the following order.

1) j= 1: This mode has a flat pattern given by

pkl = w, for all k, and yields the output power

This is maximized by choosing g~ as

gL,OP,(l, 1) = (N/2)g0 (15a)

and the maximum value is given by

P~=(l, 1) =Ng~/(8@). (15b)

From (15b) we can state that, under first mode operation,

perfect power combining is possible regardless of the

loading position, because the available power of an active
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element with the nonlinearity of (2) is g~/(86). 1 In this

optimum state the mode amplitude and the oscillation

amplitude of each section are given, respectively, by

A&= Ngo/(20) (15C)

v:(l,l)=&J(2e), for all k. (15d)

2) .j = 1 + N/2 (N:even): This mode is characterized by,-

p211,1+N/2 ‘p2n+l,l+N/2 = (– 1)” ~ l/N which gives

p;. I +N/2 = ‘;, 1 ‘or all k and leads’0 ‘he ‘ame ‘Xpression

for the output power as in the 1st mode. Accordingly, the

operation at this mode also enables perfect power addi-

tion and all expressions in (15) also hold for this mode, if

we replace the mode number 1 by 1 + N/2.

3) j+ 1,1 + N/2.’ For all these modes, (14) becomes
*

()
*

P(l,j)=ffj go–~

with

(21- l)(j- 1) ~
g; = 2gLcos2

2N “

The optimum load conductance and the maximum output

power are then given as

Ngo
g=,opt(l, j)= (16a)

4COS2[(21– 1)( j– 1)/2N] T

Ngo
—=~P (1,1). (16b)Pm,X(l, j)= ~20 ~ ~=

Note that all the modes other than j= 1 and j= 1 +N/2

cannot provide output power exceeding 2/3 of the availa-

ble power of the system, The reason why these modes

cannot succeed in perfect combining is that all V:’s

cannot take the value go/(20) as in (15d).

B. Stability of Single Modes

Next, we must determine if the power combining mode

j= 1 or j = 1 + N/2 is actually stable and if there exist any

other stable modes. In order for the jth mode oscillation

to be stable, small variations in A:’s around their sta-

tionary values must decay in time, and this is the case if

all the eigenvalues of a matrix composed of

have negative real parts. The matrix elements are written,

using (11), as

(–paj, fori=k=j

I
/0 )

J, = ~cai–oiJaJ fj 7
for i=k+j

tk
/0

(17)
– ~oik~j 1]? for i+k, i=j

o, for i#k, i+j

1The electronic output power of an active element characterizedby (2)
is given by Pc, = (1/2)(g0 —0V2)V2, which takes the maximum value

g~/(80) for V2=g0/(20).

from which the eigenvalues prove to be equal to J.i,

i=l,2, ””” , N. The stability condition for the jth mode is

then expressed as

/6~i/ei~ < aj j], for all i(#j). (18)

This condition physically means that the effective gain for

the ith mode ai – ~ijA~o is negative due to the presence of

the jth mode, which makes the ith mode oscillation im-

possible.

Next we examine stability of each mode for two typical

cases, that in which the optimum load is at the end section

and that in which the load is at the central section.

1) Case of End Loading: When a load of optimum

conductance (1 /2)Ng0 as given in (15a) is connected to

the end section (1= N), gain parameters can be expressed

as

al= (1/2)go

a,= gosin2 ‘S
J 2N “

j>z (19)

which yields, together with (IOb),

1,

fori=j=l, l+ N/2

(4/3)sin2[(i - l)7r/2N],

fori=j+l, l+ N/2
a.
l=$X< 2sin2[(i–1)~/2N],
eij

(20)

fori+j=N+2

1/2, fori=l,j#l

sin2[(i–1)~/2N],

for other i,j.

By using (20) in the stability condition (18), we find that

the stable modes include the power-combining modes

i= 1, 1 + N/2 and some higher modes specified by j >

(2/3)N+ 1.

2) Case of Central Loading: First, for odd N, 1 is taken

(N+ 1)/2 and (lOa) gives

a, =go/2

~ =gosin2j — 1~=
–{

go, for even j
J 2 0, for oddj.

(21)

Then we have

-1
1/2, fori=l, j#l

ai Ngo
4/3, fori=j=2,4,. ..,l–l

—.
(? 28 x 2’

fori+j=N+2, i=2,4, . . .,N–l
ij o, fori=3,5. ... N

1, for other i, j

(22)

and, by application of (18), it turns out that the stable

modes are those with even mode number, all of which

have voltage standing wave nodes at the central section

and give no output power.

Next, for even N, supposing that the load is connected

to the middle ~oint of the (N/2)th and the (N/2+ lkh
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section, 2 we have

(

1
al=go–gL ~ ( pN/2, 1●pN/2+ 1,1 ))2= ;%

{

1
CXj=go-gL ~(pN12,J ‘pN,2+l,j))2 “

[

go, forj=2,4,. “ s,N

= “–1 (23)
gosin2J~ T, forj=3,5,. .,, N–l

which, together with (lOb), gives

1/2, fori=l, l+ N/2

(when N/2 is even); j#i

4/3, fori=j=2,4,. ... N

4 ( ‘- l)7r_ sin2 J

3
fori=j=3,5,. -.,l–l

2N ‘

2, for i+j=N+2,

i=2,4,. ... N

(“-1)7?z sin2 1

2N ‘
for i+j=N+2,

I i=3,5, ””. ,N–l

1, for other i, j.

(24)

Inspection of stability indicates that the stable modes are

those with odd mode number satisfying j> (2/3)N+ 1

and, when N/2 is odd, the (1+ N/2)th mode is also

stable.

The conclusion is that central loading cannot ensure the

stable power-combining mode and some scheme encour-

aging the wanted mode while suppressing the unwanted

stable modes will be needed.

C. Possibili& of Simultaneous Multimode Oscillations

In general, systems with many degrees of freedom have

the possibility of simultaneous multimode oscillations and

it is known that some stable double mode oscillations

exist in a ladder oscillator with no load [12]. Here we give

a brief discussion of this problem concerning the loaded

ladder oscillator.

Taking a procedure similar to that for the single-mode

case, we can find the necessary and sufficient condition

for the stable simultaneous double-mode oscillation as

Gii > Gji

Gjj > Gij (25a)

and

G/ci(GJJ – Gij) + G/cj(Gii – Gji )> GiiGjj- GijGji,

k+i, j (25b)

where

Gij = eiJ/ai . (26)

2In this comection to the load, the maximum output power at the first
mode is stifl given by (15b).

[

stable
s~nqle
mode

stable

double

mode
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TABLE I
LIST OF STkRIX MODES

--L___ !
~ > 2fl/3 + 1 for all even N

~= N/2 + 1 for odd N/2

(g+l. (2,+2], ;+1+(2. +?)1

,=0,1,2, . . . .(1-2)/4-1

for odd N/2 (N;fJj

[;+1 - (2.+1), ; +1+(2.+1))

V=O ,1,2,..., N/4-l

for even N/2 (N~4)

Results of iipplying (25a) and (25b) to our problem can

be summarized as follows.

1) For the case of end-loading, we can find some pairs

of modes relating to each other under (25a) as

{ );+l–(V+I), :+l+(V+l) ,

with v= O, l,...,

for even N(N > 16)

(++l-(”+-+)++’+(”++)}
with v= O, l,.””,

for odd N(N> 9). (27)

But these mode-pairs cannot satisfy the second condition

(25b), so stable nonresonant double-modes are impossible

for the endloa,ding case.

2) Next, for the case of central-loading, we obtain

different results according as N is odd or even. For odd N,

there can be no stable double-modes because none of

mode pairs satisfies (25a). For even N( > 4), on the other

hand, some stable double modes can be found as listed in

Table I.

Further, it is rather easy to conclude that there exist no

stable multimode oscillations with higher multiplicity for

either the end-loading or central-loading case, because we

cannot find any mode triads satisfying

Gii Gij Gi~

Gji Gji Gj~ >0

Gki ‘kj ‘kk

which is merely one of the necessary conditions for stable

triple-mode oscillation. The results of Sections III-B and

.III-C are summarized in Table I.

IV. SUPPRESSIONOF UNDESIRED MODES

According to the analysis of the preceding section,

stable operation at the power combining mode— say, at

the first mode—requires suppression of unwanted stable

modes and, for the central loading case, also turning the
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9’

I

L L

Fig. 3. Introduction of a lossconductance for mode suppression.

wanted mode into a stable one. To meet these require-

ments, let us consider a system furnished with a conduc-

tance g’ between the n th and the (n+ l)th section as

shown in Fig. 3. In this case, the circuit equation (lb)

should have added to it:

g’(ak, n ‘ak, n+l )(%-~n+l)

on the right side, which results in addition of

– pg’Ddv/dt

on the right side of (5a), D being a matrix with Dn, ” =

D .+l,.+l =1! D.,n+l =Dn+l,n = -1 and all other elements
being zero. In terms of the mode variables, this gives rise

to an additional term

~ dxj
‘Pg’(Pnj ‘Pn+l, j) ~

on the right side of (9a), and we arrive at a modified

reduced equation

where

a; =go —gLp; ‘g’(Pn, j ‘Pn+l, j )2. (28b)

For the first mode, we have a{ = ai because p., 1–pn+ 1,1 = O

irrespective of n and find no effect due to introduction of

g’, so we can still use various relations given in (12)-(15).

Substituting (6b) into (28b), we get

(ffl, forj= 1

a; =

{

g sin2 ‘(~–1)nsin2(j–l)m
aj —

N N 2N ‘
forj >2.

(29)

As the reduced equation (28a) is of the same form as

the original one, that is (11), the stability condition (18)

still holds but only if a, is replaced by ci;.

A. Suppression of Undesired Single Modes

where, from (19) and (29),

[

8g’ n(j– 1)77I (“-l)m
a;= gO— — sin2

sin2 J

N N 2N ‘
j+ 1

and, from (lOb) and (19),

e..

{

(3/8)go> forj+l, 1 +N/2
~a =
‘ij 1 (1/4)g~, for j= 1 + N/2.

As is easily noted, in order for (30) to be satisfied, it is

necessary and sufficient that (30) holds for the modes

j= N and j= 1 + N/2. Thus, (30) reduces to

( 2$7 )g’sin2~ >: l–~sec ~ go,

both for even-and odd N (31a)

and

N
g’sin2 ~ > ~go, for even N, (31b)

which determine the optimum value of n; nopt, as

[

N/2, for odd N/2

nOpt= N/2*1, for even N/2 (32)

(N* 1)/2, for odd N.

With n replaced by nOp,, the optimum loss conductance is

then determined so as to satisfy (31). Note that, for large

N, the g’ value must be increased proportionately with N.

2) Case of Central Loading: In the original system (g’=

O), we had ai/8il < al/On, i+ 1 instead of (18) with j= 1

and the stability of the first mode could not be ensured.

But, upon introducing g’, gain parameters of all other

modes can be lowered through proper choice of n, whereas

that of the first mode remains unchanged. Thus the

power-combining mode can be altered to a stable one.

In order to suppress all the undesired modes, we can

proceed in the same reamer as in the previous case. In the

present case, the condition for mode suppression (30)

leads to

5
g’sin2 ~ sin2 & > ~Ngo, both for even and odd N

(33a)

and

g’sin2 ~ > ~Ngo, for odd N/2

2 n77
g’sin ~ > -&Ngo, for even iV/2 (33b)

which again produce the same expression (32) for nOPt. In

this case, as N is increased, the g’ value must rise in

proportion to N/sin2(z/2N), a faster rate than in the

end-loading case.

B. Suppression of Double Modes

It was shown in Section III-C that the end-loading case

and the central-loading case with odd N have no stable
double mode. and our concern here is whether or not all

1) Case of End Loading: While the first mode gain

parameter is not diminished due to introduction of g’, all

the other modes inevitably undergo attenuation as we

can see in (29), so the first mode remains stable. Then,

what is needed is to determine the values of n and g’

which make all the other modes unstable. Apparently, a

sufficient condition for this purpose is given by

a; <(ejj/6*j)a1 , forj+ 1 (30) . . .. . . . . . . . . .
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. . . .. ‘$ 1A @ L++, ~ the present system can be transformed to a lumped-

~----%l constant system of the same structure as discussed in the

~----~
Fig. 4. A distributed-line coupled holder structure,

the mode pairs remain unstable after introduction of g’.

Results of analysis are summarized below.

1) End-Loading Case: It is easy to see that the mode

pairs (27) still satisfy the weak-coupling relation (25a). A

sufficient condition for these mode pairs to remain unsta-

ble is to choose g’ as

*N+l 3
—~>— NgO,

“cos 4N 64
for odd N(N > 9). (34)

For even N, suppression of the mode pairs (27) can be

achieved through introduction of additional loss conduc-

tance g“ at the first section (n= 1). A sufficient condition

for this purpose is given by

preceding sections, namely that of Fig. 1. However, several

comments must be added on this transformation.

First, C and L, defined by (38) are necessarily frequency

dependent, and this means that the values of these param-

eters vary from mode to mode. This may introduce diffi-

culty in that the value of ~, which appears in the elements

of the matrix B in the discussion of Section II, also vmys

with modes. Fortunately, we have the definite form of B

as given in (5c) regardless of ununiqueness of ~. As a

consequence, normal modes, as the eigenvectors of B, can

be determined uniquely and still expressed by (6b), which

in turn ensures that aj and ~i are given uniquely by (9b).

And after all, equation (18) remains effective as the condi-

tion for stability. As for the eigenvalues of B, the expres-

sion for Aj can be given definitely by (6c) if /3 is under-

stood to have the jth mode value. A procedure for obtain-

ing the j th mode frequency will be described below in

Section V-A.

g“cosz; >&Ngo, for even N(N > 16). (35)
Second, for N> 3, it is generally not the case that (37)

can be satisfied by all the higher modes as well as by the

2) Central-Loading Case: The situation in which no first mode. SC),analysis based on the assumption that (37)
,.

mode pairs with weak-coupling conditions exist remains holds for every mode cannot give correct results for the

unchanged irrespective of the g’ value when N is odd. modes j >2. However, rigorous description of the first

mode operation and its stability is safely possible (see
V. DISTRIBUTED-LINE COUPLED LADDER Section V-A).

OSCILLATOR Third, the assumption O< ~ < w made when defining C

In this section, we treat the system shown in Fig. 4 as a and Lt may fail for some higher modes. However, all the

microwave version of the ladder oscillator discussed in the discussion of the behavior of each mode under the as-

preceding sections. In the figure, +1 and @ denote the sumption O< ~ < r can safely be applied for the modes for

electrical length of the coupling lines, and g~ and b~ are which @ exceeds n (see Appendix).

the load conductance and susceptance seen at the Nth With the above limitations in mind, we can use Fig. 1 as

section. an equivalent circuit for our distributed-line coupled

In the steady state, in which all the sections oscillate at ladder OscillatOr”

the same amplitude and phase as in the first mode opera- A. Operation at First Mode and Its Stability
tion of the system of Fig. 1, the middle point of each

coupling line must be the position of a voltage standing
The first mode operation can be achieved if we design

wave maximum. So, we set the following relations be-
the circuit of our oscillator using (37a) and (37b) and,

tween circuit parameters: according to the analysis in Section II, it gives perfectly

combined power output. The oscillation frequencies of

– YOcot@l – --& +YOtan$ =0
each mode are given, using (6c) and (3b), by

(

1

)
_ + I sin2’< 1 forj=l,2, ””., N

YOtan; – * +YOtan$ =0 (36) ‘~= L L, 2N C’

or, returning to the original parameters @ and @~, by

YOtan~ – * +bLYO=O, for N>3

(
YO –cot+l+tan~ _Asin2~— 1

)

1
—m-. cosec@ =—,
2N UL

which are reduced to the simpler form

–cot@l =b~, forN >2 (37a) forj=l,2,. . . , N. (39)

and
Note that (39) reduces to the first equation of (36) if we

setj= 1.
–Cot+l =tarl+/2, for N>3. (37b) Next we must determine whether the first mode oscilla-

Then, for @smaller than m, by putting tion is again stable in the present system designed to meet

(37). As stated before, the relation (37) cannot hold for
uC= YO(–cot+, + tan@/2)

‘38a) other modes; accordingly there occurs some modification

– l/aL, = – YOcosec @ (38b) in p~i for i# “1. But, by virtue of the independency of Pkl
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-L, -L,

T
Tc

T
Zc

(a) (b)

Fig. 5. Insertion of a loss into a coupling line (a) and its equivalent
circuit (b).

on k

that is, oil undergoes no alteration regardless of the pkj

value. Then, since a,= gO{ 1 – (N/2)p~i} <go irrespective

of the p~i value, we obtain

ai–ei,(al/el, )=(xi-go<o, for i#

and this ensures the stability of the first mode,

B. Suppression of Undesired Modes

Concerning stabilities of all the other modes, that is, of

the undesire~ modes, it is almost impossible to deduce a

definite conclusion because deviations from (37) differ

with modes. In any case, it is obviously necessary to

introduce a device for suppressing undesired modes as

long as some of them are possibly stable.

Following the scheme discussed in Section IV, consider

a coupling line inserted with a resistance r at the middle

point, where only the first mode has no electric current

(see Fig. 5(a)). The Y-matrix of the line section is given by

–j cotr/3+rYo/2 y

“1=’22=1 –j(rYO/2)cot(r#3/2) 0

+
[

–j cot++ ~rYo
( )11 + Cot+cot ; Y“

j cosec$

“2= ‘2* = 1 –j(rYo/2)cot(@/2) ‘0

[
= j cosec+ – + rYo cosec ~ I20 y. (40)

where the approximate expressions hold if rYo cot(+/2)<<

1. Then putting

g’~(1/4)rYo cosec2(~/2). Y.

– l/(aL, )- – Y. cosecq

u(C/2) = Y. tan(r#3/2) (41)

we get the equivalent circuit shown in Fig. 5(b) which

exactly corresponds to Fig. 3, and can behave as the way

described in Section VI.

VI. CONCLUSION

We have shown that a multiple-device oscillator using a

ladder network can provide output power just equal to the

sum of the available powers from each active device when

Fig, 6. Another equivalent circuit for a distributed-line coupled ladder
structure.

it operates at the first (fundamental) mode, and discussed

the stability of this mode together with a method for

suppressing undesired modes.

In the present paper we used mode-analysis technique

to discuss moding problem, but this technique fails to give

the phase difference between two adjacent sections, which

must exist in consistency with the power flow from each

active device to the load. For derivation of the proper

phase relations, it is necessary to take another approach,

say, steady-state analysis for the system operated at a

desired mode. This additional work is being carried out.

Regarding the problem of elimination of multimode in

the end-loading ladder oscillator, a useful comment can

be added from a practical standpoint: in view of (6c) and

Table I, the oscillation frequencies of the stable undesired

modes can be well separated from that of the first mode

by using a large value for the coupling parameter /?; thus,

the number of undesired modes to be suppressed is re-

duced depending on the working range of the active

devices and, if fortunate, only the first mode can appear

without introducing any loss conductance.

Although the purpose of this paper is to present a

theoretical study on a multiple-device ladder network, it

seems encouraging to note that its power-combining capa-

bility has already been verified by experiments in the

microwave region3 [16], [17]. More detailed and extensive

study toward practical use is needed. Also, application of

the multiple-device ladder network to construction of a

high power amplifier would be an interesting subject for

further work.

APPENDIX

Treatment of the Modes for which r< ~ < 2~

For these modes, instead of (38a) and (38b), we set

– l/OJL’ = Yo( –cotr#31 + tan~/2)

CJCf= – Y. cosec+ (42)

and obtain Fig. 6 as an equivalent circuit of the system,

Then, the differential equation of the system becomes

~, d’tr du 4
‘13<V (43a)— +u=/(go&g@~)~ – 3P d7

dr’

3The desired-modeoperation hasbeen successfullyobtained under the
optimum circuit condition (36). Under other conditions far from (36),
undesired modesean appear, but hey are easily suppressedby useof the
technique as stated in Section IV. As typical data, we obtained the
output power of about 100, 98, and 96 percent of the sum of available
powers of each diode (Gunn diode) for quadruple-, sextuple-, and
octuple-diode ladder structure, respectively.
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with

1 –1 . 0

–1. 2 .”::”...
&= “.

“. “.
“.“.

“. :2””–1
o

. .
–1 1

and

T=(Jot,
“:=(+++)+

p’=1/(C&).

The eigertvalues of B’ are given by

~.=4sin2JS~,
21V

j=l,2,. ... N

and the j th mode frequency of the unperturbed

(43a) is written as

f

(43b)

(43C)

(44)

system of

@;=(y)”’@:=
(l/ct)(l/L+ l/L’)

4sin2(j– l)m/2N

which is reduced to the same expression as (39) by using

(42). On the other hand, the eigenvectors of B’ and

accordingly of (B’)- 1 are the same as those for B. Thus,

both equivalent circuit representation of Fig. 1 and Fig. 6

gives the same normal modes and the same mode-

frequencies.

As before, transforming the variables from ok’s to XJ’S

by (7) and assuming x~ =A~ cos {(~~) ‘112r+~~}, we ob-

tain

where aj’s and Oij’s are exactly the same as given in (10).

Reduced differential equations of (45) then become

(46)

Thus, if we suppose that O<+< ~ for modes 1 <j < J and

T<@ <2 r for modes J+ 1 <j< N, appropriate reduced

equations will be (11) and (46) according as 1 <j< J and

J+ 1< j < N. But we notice that (46) is the same as (11)

except for the coefficient of the right side. So the stability

1067

condition for the jth mode is still given by (18) and this

justifies discussion of the behavior of each mode entirely

on the basis of (1 1).

To sum up, a physically reasonable equivalent circuit

for a distributed-line coupled ladder oscillator of Fig. 41is

given by Fig. 1 or by Fig. 6 according as @<T or T<@<

2 n. Mathematical description of the behavior of ea~ch

mode, especially of the competitive relation between

modes, is possible using either of them.
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