IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-28, NO. 10, OCTOBER 1980

(b)

(a)

GAIN (dB)

10 15 20
OUTPUT POWER (dBm)

Fig. 10. Gain compression as a function of output power measured at
12 GHz. (a) Response of the 8- to 12-GHz amplifier optimized for
large-signal performance. (b) Response of the same amplifier, but with
its output circuit retuned externally for maximum small-signal gain.

output port retuned for maximum small-signal gain. The
retuning of the output was simulated with the aid of an
external tuning arrangement [5]. This experiment quanti-
tatively illustrates the reduction in large-signal gain which
would result if achieving the nominal output power level
had been attempted with only a small-signal design.

IV. CoNcLusIONS

A systematic procedure has been described for design-
ing GaAs FET power amplifiers for optimum large-signal
gain performance. The technique has been applied,
specifically, to broadband quasi-class-A circuits. The
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principal merits of the method include remarkable sim-
plicity and numerical efficiency of the overall design
procedure, reliability in predicting large-signal amplifier
performance, and the need to acquire experimental large-
signal data only at one particular frequency. The viability
of this approach has been verified through various com-
parisons between measured and predicted results for three
individual devices exhibiting considerably differing
geometries and electrical characteristics.
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Power Combining Ladder Network
with Many Active Devices

KIYOSHI FUKUI, MEMBER, IEEE, AND SHIGEJI NOGI

Abstract—This paper presents a thoretical treatment of a line array of
van der Pol oscillators mutually coupled by inductances and connected to a
load (ie., a multiple-device ladder oscillator) aiming to investigate its
power-combining capability. A mode analysis approach is used, and it is
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shown that this system can provide output power just equal to the sum of
the available powers from all active devices when it operates at the first
mode. In the case where the optimum load is connected at an end of the
ladder structure, some stable modes other than the first mode exist, but no
stable simultancous multimodes are found. A method for suppressing
undesired modes is discussed. A distributed-line coupled ladder structure is
also treated to give a thoretical basis for building a microwave muitiple-
device ladder oscillator.
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I. INTRODUCTION

ECENTLY, various methods for combining the out-
R put powers of several active devices have been pre-
sented [1], [2]. They can be classified conveniently into
two categories: those which combine outputs of several
discrete oscillators coupled together and those which con-
struct a multiple-device oscillator. In the former, choice of
the combining (or coupling) network is of primary impor-
tance and both tree and chain structures are typical [3]-[5].
Single-step combining has been proposed recently [6]. As
for the latter category, the general principle of building a
multiple-device oscillator is such that diodes are effec-
tively coupled with a common single cavity [7]-[10], with
an exception which connects devices to a load at the
center through coaxial lines [11].

This paper treats a ladder network loaded with active
devices and connected to a resistive load as shown in Fig.
1. While the network apparently consists of inductively
coupled oscillator cells, it belongs essentially to the latter
category because each active element couples with a nor-
mal mode of the ladder structure. In Sections II and III,
after deriving fundamental equations describing the be-
havior of each normal mode, we discuss of power-
combining capability and stability for each mode, together
with examination of simultaneous multimode oscillations.
Section IV is devoted to description of a method for
suppression of undesired modes. Further, in Section V, we
treat a distributed-line coupled ladder structure with the
object being to offer a theoretical basis for building a
microwave multiple-device ladder oscillator.

II. FUNDAMENTAL EQUATION

A line array of van der Pol oscillators mutually coupled
by inductances or capacitances, was analyzed by Endo
and Mori who studied its behavior and investigated the
possibility of simultaneous multimode oscillations [I2].
Here we treat the same structure, but with a load of
conductance g, connected as shown in Fig. 1, with the
object being to investigate its power combining capability.

Supposing that g, is connected at the /th section, we
can write the circuit equations as

di,
L'_d_t =0~ V41

do

e, 1 .
— T vakdt+(g+gL6k1)vk+lak’

~h=C

k-1

k=1,2,---,N (1)

where §,,; is the Kronecker delta and, for the volt-ampere
characteristic of the active element, a simple cubic nonlin-
earity is assumed

. 4
fo= =810+ 300%-

2

Combination of (1) and (2) gives

d, 1({1 2
a* C
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Fig. 1.

A power combining multiple-device ladder network.

which can be rewritten as

d?v,
> H(1+28) v, — B(op—y + 04 41)
dr
dv, 4 _dv;
=p(8o —80u) - —7zr0— = (32)
where
7= Wyt w§=l/LC
B=L/L,  p=1/aC
go=8178- (3b)

The boundary condition is given by i, =iy, ; =0 which,
by use of (1a), leads to
Uy =10y

4)

Then (3a) can be expressed by a vector differential equa-
tion

On =On+1-

d* dve 4 dV
d—:;"'BU:H[(gOE_gLDI)d__Eo_T] (5a)
with
v=[0vy,0,,- ", 05]"
3 .3 3¢
V=[Ul,02,"',UN:| (Sb)
and
1+8 —B-.,_‘ 0
—B. 1+28.
B=
T aaag o | GO
0 =B 148

where E is the unit matrix and D, the matrix in which only
the (/,/) element has nonzero value of unity and all the
others are zero.

Let us now introduce the normal modes of the unper-
turbed system which is described by d%v/dr? +Bv=0,
and transform (5a) into the differential equation describ-
ing the oscillation at each mode. The normal modes are
represented by the eigenvectors of the matrix B, which

1 1
7 + ft)uk——- C—Lt(ok_1+vk+1) = E(gl—g-gL3k1“49012c) dr

dvo,
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Fig. 2. Distribution of normal mode frequencies \/—}; ©,

easily be obtained as

p=[pyprypy]’s  j=12,,N  (62)
with

P, = \/I/—N, forj=1

V2/N cos[(2k—1)(j—1)/2N]= forj>2

(6b)

where k=1,2,-++, N and p, P/ =4, is imposed. The corre-

sponding eigenvalues of B are glven by

= .o J—1 . .
A;=1+4Bsin N ™ j=1,-++,N (6¢c)
and }\; w, indicates the frequency of the jth mode
oscillation of the unperturbed system (see Fig. 2).

Let us expand v as
Q)

where x,’s are called the mode variables and are assumed
to have the form

5= a,008(Nfr +4,) @
and apply the equivalent linearization technique due to
Kryloff and Bogoliuboff [13] to the term in (5a) under the
assumption of no resonant interaction between modes.
Further, if we assume that the mode frequencies are
separated sufficiently, the terms including dx;/dr will give
only negligible effect on the jth mode oscillation as long
as i#j. Thus, we obtain

d%x, dx.
'_zj"'}‘jxj:“( g,4;- 2 6, ) (9a)
dr t(#])
where
a; =gy~ 8P},
N
0]1____0 2 1’21
k=1
N
0,~,~E20k21pi,pi.~, J,i=1,2,---,N.  (9b)

After Ramb’s theory of laser oscillation [14], we may call
a; a gain parameter and §,; and 6, self- and mutual-
saturation parameters, respectively. Substituting (6b) into
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(9b), we can determine these parameter values as

@ =8, —8./N
2 21-1)(j-1
aj=g0——§,—Lc sz(—-%——lw, j22  (10a)
and

§/N, forj=i=1, 1+N/2
ZJG/DO/N,  forj=itl, 14N/2 0
7 19/N, forj+i=N+2

26/N, for other J, i.

Using the averaging method under the assumption that 4,
and y; in (8) are slowly varying functions of time, we
finally obtain the reduced differential equations of (9a) as

a4, ( 9,42 -0, A2)A2

——-=M a - i 1

dr g o J

4y,

ar an

III. STEADY STATE OF OPTIMUM OPERATION

A. Maximum Qutput Power

Consider a steady state in which only one mode, say the
Jjth mode, is excited. Putting A?=0 for all i except j and
dA?/dr=0 in (11), the amplitude of steady oscillation at
this mode is given as

&,

A== =A%,
J 0jj J

(12)

When the circuit is connected with a load at the /th
section and operates at the jth mode, the voltage of the
kth section, V,(/, j), and the output power P(/, j) are

then given, using (7) and (12), as
(l J)= kaA_[O Pk, /0”

(13)

and
P(l, J)-—gLVﬁ(l J)= 2ng1, /0, (14)

As we can see in (6b) and (10) the first and the (1+N/2)th
modes are of particular interest. So, it will be appropriate
to proceed in the following order.

1) j=1: This mode has a flat pattern given by

a=V1/N, for all k, and yields the output power

e (g, 52)
20\80" N )

P(1,1)=

This is maximized by choosing g, as

gL,opt(l’ 1)=(N/2)g0 (153)
and the maximum value is given by
Prx(1,1)=Ng3/(86). (15b)

From (15b) we can state that, under first mode operation,
perfect power combining is possible regardless of the
loading position, because the available power of an active
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element with the nonlinearity of (2) is g2/(86).! In this
optimum state the mode amplitude and the oscillation
amplitude of each section are given, respectively, by

A}=Ngo/(20) (15¢c)
Vi1,1)=g,/(28), forallk. (15d)

2) j=I+N/2 (N:even): This mode is characterized by
Prn1+N72 =P2n+1,14N/2 T (- 1)”\/1/N which gives
Pri+N /2=Pk2,1 for all k£ and leads to the same expression
for the output power as in the 1st mode. Accordingly, the
operation at this mode also enables perfect power addi-
tion and all expressions in (15) also hold for this mode, if
we replace the mode number 1 by 1+N/2.

3)j#1,1+N/2: For all these modes, (14) becomes

8 gl
P(l,])=3—§(go_7\,£)

with
2 QI=D(G=1)
2N ’

The optimum load conductance and the maximum output
power are then given as

gF =2g,cos

Ngo

ELon(l /)= 4cos?[(21-1)(j—1)/2N]7 (162)
Pl /)= T8 = 2 Py (1,1). (16b)

Note that all the modes other than j=1 and j=1+N/2
cannot provide output power exceeding 2/3 of the availa-
ble power of the system. The reason why these modes
cannot succeed in perfect combining is that all ¥2’s
cannot take the value g,/(28) as in (15d).

B. Stability of Single Modes

Next, we must determine if the power combining mode
j=1lorj=1+N/2 is actually stable and if there exist any
other stable modes. In order for the jth mode oscillation
to be stable, small variations in 42’s around their sta-
tionary values must decay in time, and this is the case if
all the eigenvalues of a matrix composed of

d (dA,?”
QN U ] | o

HEY)

k=
=0

have negative real parts. The matrix elements are written,
using (11), as

—uaj, fOI‘i=k=j

J= lu'(ai—aijaj/ajj)’ fori=k+#j (17)
_p'aikaj/ojj’ for i#k, i=j
0, fori=k, i#j

The electronic output power of an active element characterized by (2)
is given by P,,=(1/2)(go—0V?)V2, which takes the maximum value
85/(88) for V2=go/(26).
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from which the eigenvalues prove to be equal to J,,
i=1,2,---, N. The stability condition for the jth mode is
then expressed as

«;/0,;<a;/8;

i’

for all i(5%/). (18)

This condition physically means that the effective gain for
the ith mode a,—6,; 4%, is negative due to the presence of
the jth mode, which makes the ith mode oscillation im-
possible.

Next we examine stability of each mode for two typical
cases, that in which the optimum load is at the end section
and that in which the load is at the central section.

1) Case of End Loading: When a load of optimum
conductance (1/2)Ng, as given in (15a) is connected to
the end section (/=N), gain parameters can be expressed
as

a;=(1/2)go
aj=g0sin212_Nl w22 (19)
which yields, together with (10b),
1,
fori=j=1,1+N/2
(4/3)sin*[(i—1)7/2N],
fori=j#1,1+N/2
ai Ngo =2 .
7 =35 % 2sin®[(i—1)7/2N], (20)
i fori+j=N+2
1/2, fori=1,j#1
sin’[(i—1)w/2N],
for other i, ;.

By using (20) in the stability condition (18), we find that
the stable modes include the power-combining modes
i=1, 1+ N/2 and some higher modes specified by j>
2/3)N+1.

2) Case of Central Loading: First, for odd N, [ is taken
(N+1)/2 and (10a) gives

a;=go/2

2j—1 8o> for even j
a;, =g sin’ ———ar = a1
1 2 {0, for odd ;. (21)
Then we have
1/2, fori=1, j#1
« Ng, |43 fori=j=2,4,.-- N-1
0—l= 200X 2, fori+j=N+2,i=2,4,--- ,N—1
7 O’ fori=3,5...,N
I, for other i, j

(22)

and, by application of (18), it turns out that the stable
modes are those with even mode number, all of which
have voltage standing wave nodes at the central section
and give no output power.

Next, for even N, supposing that the load is connected
to the middle point of the (N/2)th and the (N/2+ 1)th
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section,? we have

1 2
0‘1""80—81_{ E(PN/z, 1+PN/2+1,1)} = 'i‘go

1 2
aj""'go_gL{ ‘Z'(PN/2,1+PN/2+ 1,,')}

go> forj=2,4,---,N
- . zj_l . - _ (23)
8osin N forj=3,5,---,N—-1
which, together with (10b), gives
(172, fori=1,14+N/2
(when N /2 is even); j#i
4/3, fori=j=2,4,---,N
4. 2(j_1)77 o
o« Neg 3sm N fori=j=3,5,---,N—1
.- 28 N2, fori+j=N+2,
’ i=2,4,---,N
2 (i'_ 1)77 Cy e
2sin N fori+j=N+2,
i=3,5,---,N-1
1 for other i, j.

(24)

Inspection of stability indicates that the stable modes are
those with odd mode number satisfying j>(2/3)N+1
and, when N/2 is odd, the (1+N/2)th mode is also
stable.

The conclusion is that central loading cannot ensure the
stable power-combining mode and some scheme encour-
aging the wanted mode while suppressing the unwanted
stable modes will be needed.

C. Possibility of Simultaneous Multimode Oscillations

In general, systems with many degrees of freedom have
the possibility of simultaneous multimode oscillations and
it is known that some stable double mode oscillations
exist in a ladder oscillator with no load [12]. Here we give

a brief discussion of this problem concerning the loaded '

ladder oscillator.

Taking a procedure similar to that for the single-mode
case, we can find the necessary and sufficient condition
for the stable simultaneous double-mode oscillation as

G,;>Gy;
G,>G,; (25a)
and
Gki(ij_ Gij) + ij(Gii— Gji) >G,;;6;,;— GGy
ki, j (25b)
where

GU = 0ij/ai - (26)

2In this connection to the load, the maximum output power at the first
mode is still given by (15b).
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TABLE I
LiST OF STABLE MODES

end-loading central-loading case

case

¥ 3 odd N i _even
stable J=1, ¥/2+1, J=2,4,--- J>28/3+1 for all even ¥
single el N-1
mode 7 228/3+1 J=N/2+1 for odd N/2

(F41- (2ue2), %’—+1+(2\)+?))

v=0,1,2,...,{N-2)/4 =1

stable
double

for odd ¥/2 (N26)
none none

mode (gu ~(2v+1), g—+l+(2v+l))
v=0,1,2,..., ¥/4-1

for even N/2 (N24)

Results of applying (25a) and (25b) to our problem can
be summarized as follows.

1) For the case of end-loading, we can find some pairs
of modes relating to each other under (25a) as

{ﬂ+1—-(v+1), E+l+(v+1)},
2 2
with»=0,1,---,

for even N(N > 16)

N I\ N 1
{7"?‘1—(11'1'-27), 7+1+(V+5)},

with »=0,1,- -,

forodd N(N>9). (27)
But these mode-pairs cannot satisfy the second condition
(25b), so stable nonresonant double-modes are impossible
for the endloading case.

2) Next, for the case of central-loading, we obtain
different results according as N is odd or even. For odd ¥,
there can be no stable double-modes because none of
mode pairs satisfies (25a). For even N(>4), on the other
hand, some stable double modes can be found as listed in
Table L.

Further, it is rather easy to conclude that there exist no
stable multimode oscillations with higher multiplicity for
either the end-loading or central-loading case, because we
cannot find any mode triads satisfying

(;ﬁ (;i' (;ik
G Gy Gu|>0
(;ki (;kj (;kk

which is merely one of the necessary conditions for stable
triple-mode oscillation. The results of Sections III-B and
III-C are summarized in Table 1.

1V. SuUPPRESSION OF UNDESIRED MODES

According to the analysis of the preceding section,
stable operation at the power combining mode—say, at
the first mode—requires suppression of unwanted stable
modes and, for the central loading case, also turning the
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Fig. 3. Introduction of a loss conductance for mode suppression.

wanted mode into a stable one. To meet these require-
ments, let us consider a system furnished with a conduc-
tance g’ between the nth and the (n+1)th section as
shown in Fig. 3. In this case, the circuit equation (1b)
should have added to it:

g,(ak a0k, ar 1)V —
on the right side, which results in addition of
—ug'Ddv/dt
on the right side of (5a), D being a matrix with D, =
D,y ,ns1=1LD, ,.1=D,,,,=—1and all other elements

being zero. In terms of the mode variables, this gives rise
to an additional term

n+l)

’ dej
— 18 (Poj Pner ;)

on the right side of (9a), and we arrive at a modified
reduced equation

dA?
_d.f = (a;. 0,47 — X l)j,.A,?)A} (28a)
T (/)
where
o =8y — 8P} =8 (Py ; —Pusr, ;) (28b)

For the first mode, we have o] =a; because p, ; —p,41; =0
irrespective of » and find no effect due to introduction of
g’, so we can still use various relations given in (12)-(15).
Substituting (6b) into (28b), we get

oy, forj=l
= 8g" . ,n(j—D7 . ,(—D7 .
- f .
4= sin I sin” == orj>2
(29)

As the reduced equation (28a) is of the same form as
the original one, that is (11), the stability condition (18)
still holds but only if «, is replaced by /.

A. Suppression of Undesired Single Modes

1) Case of End Loading: While the first mode gain
parameter is not diminished due to introduction of g’, all
the other modes innevitably undergo attenuation as we
can see in (29), so the first mode remains stable. Then,
what is needed is to determine the values of n and g’
which make all the other modes unstable. Apparently, a
sufficient condition for this purpose is given by

a;<(6,/0,,)e,, forj#1 (30)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-28, NO. 10, OCTOBER 1980

where, from (19) and (29),

[go 815 sin n(j;]l)'ﬂ ]Sinz(j——l)w,

2N
and, from (10b) and (19),
g_jj_a - { (3/8)g0’
0 ' (1/4)g03

ij
As is easily noted, in order for (30) to be satisfied, it is
necessary and sufficient that (30) holds for the modes
j=N and j=1+ N /2. Thus, (30) reduces to

J¥*1

forj#1,1+N/2
forj=1+N/2.

217 iv_(l_iseczl)
gy > {17 g% N J80
both for even'and odd N (31a)

and
g s1n2-’12—7r %Vg g,, forevenN, (31b)
which determine the optimum value of n; n,,, as
N/2, forodd N/2
Rop=1{N/2%1, for even N/2 (32)
(Nx1)/2, for odd N.

With 7 replaced by 7, the optimum loss conductance is
then determined so as to satisfy (31). Note that, for large
N, the g’ value must be increased proportionately with N.

2) Case of Central Loading: In the original system (g’=
0), we had «o,/6,,<a;/0,,, i#1 instead of (18) with j=1
and the stability of the first mode could not be ensured.
But, upon introducing g’, gain parameters of all other
modes can be lowered through proper choice of n, whereas
that of the first mode remains unchanged. Thus the
power-combining mode can be altered to a stable one.

In order to suppress all the undesired modes, we can
proceed in the same manner as in the previous case. In the
present case, the condition for mode suppression (30)
leads to

‘s 2 T3
g’sin’ sm N > ~—Ng,, both for even and odd N
(33a)
and
g’sinzfz—w— > 136 Ng,, for odd N/2
g’sin® £271 > %Ng0 , for even N/2 (33b)
which again produce the same expression (32) for n ;. In

this case, as N is increased, the g’ value must rise in
proportion to N/sin*(7/2N), a faster rate than in the
end-loading case.

B. Suppression of Double Modes

It was shown in Section III-C that the end-loading case
and the central-loading case with odd N have no stable
double mode, and our concern here is whether or not all
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Fig. 4. A distributed-line coupled ladder structure.

the mode pairs remain unstable after introduction of g’.
Results of analysis are summarized below.

1) End-Loading Case: It is easy to see that the mode
pairs (27) still satisfy the weak-coupling relation (25a). A
sufficient condition for these mode pairs to remain unsta-
ble is to choose g’ as

3

1w>aNg0, for odd N(N >9). (34)

’ 2
g'eos"
For even N, suppression of the mode pairs (27) can be
achieved through introduction of additional loss conduc-
tance g” at the first section (n=1). A sufficient condition
for this purpose is given by

g"coszz >—§-Ng0, foreven N(N >16). (35)

N~ 64

2) Central-Loading Case: The situation in which no

mode pairs with weak-coupling conditions exist remains
unchanged irrespective of the g’ value when N is odd.

V. DISTRIBUTED-LINE COUPLED LADDER
OSCILLATOR

In this section, we treat the system shown in Fig. 4 as a
microwave version of the ladder oscillator discussed in the
preceding sections. In the figure, ¢, and ¢ denote the
electrical length of the coupling lines, and g; and b, are
the load conductance and susceptance seen at the Nth
section.

In the steady state, in which all the sections oscillate at
the same amplitude and phase as in the first mode opera-
tion of the system of Fig. 1, the middle point of each
coupling line must be the position of a voltage standing
wave maximum. So, we set the following relations be-
tween circuit parameters:

1
— Y, cotp, — — +Y0tan32 =0

wL 2
Y, tan%—w—lL+Yotan%=0 (36)
Yytan — L 45,¥,=0, forN>3
02 L T TEOT T
which are reduced to the simpler form
—cotg, =b,, forN>2 (37a)
and
—cotp, =tan¢ /2, for N>3. (37b)
Then, for ¢ smaller than 7, by putting
wC=Yy(—cote;+tang/2) (38a)
~1/wL,=-Y,cosec (38b)
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the present system can be transformed to a lumped-
constant system of the same structure as discussed in the
preceding sections, namely that of Fig. 1. However, several
comments must be added on this transformation.

First, C and L, defined by (38) are necessarily frequency
dependent, and this means that the values of these param-
eters vary from mode to mode. This may introduce diffi-
culty in that the value of 8, which appears in the elements
of the matrix B in the discussion of Section II, also varys
with modes. Fortunately, we have the definite form of B
as given in (5c) regardless of ununiqueness of 8. As a
consequence, normal modes, as the eigenvectors of B, can
be determined uniquely and still expressed by (6b), which
in turn ensures that a; and 8, are given uniquely by (9b).
And after all, equation (18) remains effective as the condi-
tion for stability. As for the eigenvalues of B, the expres-
sion for A; can be given definitely by (6¢) if B is under-
stood to have the jth mode value. A procedure for obtain-
ing the jth mode frequency will be described below in

Section V-A.
Second, for N> 3, it is generally not the case that (37)

can be satisfied by all the higher modes as well as by the
first mode. So, analysis based on the assumption that (37)
holds for every mode cannot give correct results for the
modes j>2. However, rigorous description of the first
mode operation and its stability is safely possible (see
Section V-A).

Third, the assumption 0 <¢ <7 made when defining C
and L, may fail for some higher modes. However, all the
discussion of the behavior of each mode under the as-
sumption 0< ¢ < can safely be applied for the modes for
which ¢ exceeds 7 (see Appendix).

With the above limitations in mind, we can use Fig. 1 as
an equivalent circuit for our distributed-line coupled
ladder oscillator.

A. Operation at First Mode and Its Stability

The first mode operation can be achieved if we design
the circuit of our oscillator using (37a) and (37b) and,
according to the analysis in Section II, it gives perfectly
combined power output. The oscillation frequencies of
each mode are given, using (6¢) and (3b), by

oo.2=(l+isin2!_—l)l forj=1,2,---, N

4 L L 2N JC’
or, returning to the original parameters ¢ and ¢,, by
_ ?_4sii— L. )= L
Yo( cot¢, +tan ) 4sin’ T cosece oL’

forj=1,2,---,N. (39)
Note that (39) reduces to the first equation of (36) if we
set j=1.

Next we must determine whether the first mode oscilla-
tion is again stable in the present system designed to meet
(37). As stated before, the relation (37) cannot hold for
other modes; accordingly there occurs some modification
in p,; for i 1. But, by virtue of the independency of p,,
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that is, 4,; undergoes no alteration regardless of the p,,
value. Then, since «,=g,{1—(N/2)p%}<g, irrespective
of the p,,; value, we obtain

o;—0,(a,;/0,1)=a;—g,<0, fori==1

and this ensures the stability of the first mode.

B. Suppression of Undesired Modes

Concerning stabilities of all the other modes, that is, of
the undesired modes, it is almost impossible to deduce a
definite conclusion because deviations from (37) differ
with modes. In any case, it is obviously necessary to
introduce a device for suppressing undesired modes as
long as some of them are possibly stable.

Following the scheme discussed in Section IV, consider
a coupling line inserted with a resistance r at the middle
point, where only the first mode has no electric current
(see Fig. 5(a)). The Y-matrix of the line section is given by

~jcotep+rY, /2

Y = Y =
HTE T 1—j(rYy /2)cot(9/2) °
#[ —j cotp+ %rYo(l +cot¢cot%)] Y,
J coseco
2 1j(ryy /2)eot(9/2)
= [ J cosecd — —;-rYo coseczg— ] Y, (40)

where the approximate expressions hold if r¥, cot(¢/2)<
1. Then putting

g'=(1/4)rY, cosec*(¢/2)-Y,
—1/(wL,)=—Y¥, coseco
w(C/2)=Y, tan(¢/2) 41)

we get the equivalent circuit shown in Fig. 5(b) which
exactly corresponds to Fig. 3, and can behave as the way
described in Section VI.

VL

We have shown that a multiple-device oscillator using a
ladder network can provide output power just equal to the
sum of the available powers from each active device when

CONCLUSION
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Fig. 6. Another equivalent circuit for a distributed-line coupled ladder
structure.

it operates at the first (fundamental) mode, and discussed
the stability of this mode together with a method for
suppressing undesired modes.

In the present paper we used mode-analysis technique
to discuss moding problem, but this technique fails to give
the phase difference between two adjacent sections, which
must exist in consistency with the power flow from each
active device to the load. For derivation of the proper
phase relations, it is necessary to take another approach,
say, steady-state analysis for the system operated at a
desired mode. This additional work is being carried out.
Regarding the problem of elimination of multimodes in
the end-loading ladder oscillator, a useful comment can
be added from a practical standpoint: in view of (6¢) and
Table I, the oscillation frequencies of the stable undesired
modes can be well separated from that of the first mode
by using a large value for the coupling parameter 8; thus,
the number of undesired modes to be suppressed is re-
duced depending on the working range of the active
devices and, if fortunate, only the first mode can appear
without introducing any loss conductances.

Although the purpose of this paper is to present a
theoretical study on a multiple-device ladder network, it
seems encouraging to note that its power-combining capa-
bility has already been verified by experiments in the
microwave region® [16], [17]. More detailed and extensive
study toward practical use is needed. Also, application of
the multiple-device ladder network to construction of a
high power amplifier would be an interesting subject for
further work.

APPENDIX

Treatment of the Modes for which n < ¢ <2«
For these modes, instead of (38a) and (38b), we set

~1/wL'=Yy(—cot¢,+tan¢/2)

wC,= — Y, coseco (42)

and obtain Fig. 6 as an equivalent circuit of the system.
Then, the differential equation of the system becomes
2

A do 4 ,dV
B to=w(gE—g, D)7 — 318

ar (43a)

3The desired-mode operation has been successfully obtained under the
optimum circuit condition (36). Under other conditions far from (36),
undesired modes can appear, but they are easily suppressed by use of the
technique as stated in Section IV. As typical data, we obtained the
output power of about 100, 98, and 96 percent of the sum of available
powers of each diode (Gunn diode) for quadruple-, sextuple-, and
octuple-diode ladder structure, respectively.
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with
-1. 0
_ 2.
B'= g . (43b)
S -
0 -1
and
, (1. 1\1
W =1/(aC)- (43¢)
The eigenvalues of B’ are given by
' —4sinzd =L im1.2.-
A =4sin SN 1,2,---,N 44

and the jth mode frequency of the unperturbed system of
(43a) is written as

(1/6)/L+1/L)
4sin?(j—1)w/2N

-1
WI=(N) wg=

which is reduced to the same expression as (39) by using
(42). On the other hand, the eigenvectors of B’ and
accordingly of (B")~! are the same as those for B. Thus,
both equivalent circuit representation of Fig. 1 and Fig. 6
gives the same normal modes and the same mode-
frequencies.

As before, transforming the variables from v,’s to x;’s
by (7) and assuming x; =4, cos {(A})_1/2fr+4/j}, we ob-
tain

d?x, 4 N
‘ S 8,42 |x, (43)

i=1

(i)

where a;’s and §,;’s are ekactly the same as given in (10).

Reduced differential equations of (45) then become

Az N
J 2 2
"?";\_;_ o= 8,47~ 21 047 |45,
-
(i#))
dy,
—gt—-o. (46)

Thus, if we suppose that 0<¢ <« for modes 1<, <J and
7<¢p<27 for modes J+1<,j< N, appropriate reduced
equations will be (11) and (46) according as 1<, <J and
J+1<j< N. But we notice that (46) is the same as (11)
except for the coefficient of the right side. So the stability
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condition for the jth mode is still given by (18) and this
Justifies discussion of the behavior of each mode entirely
on the basis of (11). :

To sum up, a physically reasonable equivalent circuit
for a distributed-line coupled ladder oscillator of Fig, 4 is
given by Fig. 1 or by Fig. 6 according as ¢ <7 or 7 <¢<
27, Mathematical description of the behavior of each
mode, especially of the competitive relation between
modes, is possible using either of them.
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